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Because of the completely general way in which 
the electron-density constraints can be applied, it is 
very easy to incorporate almost any other kind of 
constraint into the method. An obvious example of 
this is when a structure is partially known, e.g. the 
main chain of a macromolecule. The known density 
can be enforced on the map as part of the density 
modification and the remaining density determined 
along with the known density. An alternative 
approach would be to subtract the known density 
from the map and to determine the remaining density 
as a smaller structure. It is intended to try both of 
these developments of the method. 

The most efficient way to propagate knowledge of 
phases throughout the reciprocal lattice is to use 
normalized structure factors, E's, rather than 
observed structure factors, F's. However, if E's are 
used, the map is subject to large series-termination 
errors and a considerable amount of negative density 
is produced. The background smoothing will get rid 
of this and, in so doing, extrapolate the E's to higher 
resolution. The extrapolated E's should be used in 
the calculation of the next map or the negative density 

will reappear. There are therefore two ways of pro- 
ceeding with the calculations. One is to use F's, which 
produce no series-termination errors, and perform 
the calculations at the observed resolution. The other 
way is to use E's and perform the calculations at a 
suitably high resolution with extrapolated data, as is 
normally done in maximum-entropy calculations. 
This will increase the computing time considerably. 
The author has chosen to use F's to keep the comput- 
ing time short, although the possibility of using E's 
needs to be investigated properly. 
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Abstract 

A new method for phase refinement and extension, 
which combines Sayre's equation with solvent flatten- 
ing and histogram matching, has been developed. 
Equations which express electron-density constraints 
are solved using discrete Fourier transforms to give 
a new approximation to the electron density. The 
formulation of the equations is in real space, which 
allows any set of constraints to be entered directly 
into the calculation. An application to the known 
structure of 2Zn insulin refined the 3 A MIR phases 
from a mean phase error of 46 to 39 ° and extended 
the phases to 2 A resolution with a mean overall phase 
error of 57 ° . Analysis of the phase errors shows that, 
for the strong reflexions, the new method determines 
phases with half the mean error of MIR phases. 

Introduction 
The dominant method in the determination of 
macromolecular structures is that of multiple isomor- 
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phous replacement (MIR). The phases obtained by 
MIR suffer from inaccuracies due to experimental 
error and lack of isomorphism and they are not always 
determined to the full resolution of the native data. 
All of this detracts from the quality of the electron- 
density map and may lead to difficulties in its interpre- 
tation. Thus, the ability to improve the quality of the 
MIR phases and to extend them to the full resolution 
of the native data would be a valuable contribution 
to protein crystallography. 

The most successful technique of phase refinement 
and extension uses density modification. In its various 
forms it applies constraints to the electron density 
such as positivity, atomicity, boundedness, solvent 
flatness, connectivity and non-crystallographic sym- 
metry. For a review, see Podjarny, Bhat & Zwick 
(1987). A recent addition to density modification is 
the histogram matching of Zhang & Main (1990) 
which imposes the correct electron-density histogram 
on the map. When combined with solvent flattening 
(Wang, 1985), it successfully refined the 1.9 A MIR 
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phases of 2Zn pig insulin (Baker, Blundell, Cutfield, 
Cutfield, Dodson, Dodson, Hodgkin, Hubbard, 
Isaacs, Reynolds, Sakabe & Vijayan, 1988) and ex- 
tended them to 1.5/~. At lower resolution, the method 
refined phases successfully, but it failed in phase 
extension. 

In order to improve the method, we have sought 
to combine it with ideas from direct methods of phase 
determination. With the success of direct methods on 
small molecules (Karle, 1986; Hauptman, 1986; 
Woolfson, 1987), more attention is being paid to their 
use in the determination of macromolecular struc- 
tures. Serious attempts have been made to use direct 
methods to improve MIR phases such as the use of 
Sayre's equation (Sayre, 1974), the maximum deter- 
minant rule (de Rango, Mauguen, Tsoucaris, Dod- 
son, Dodson & Taylor, 1985) and the tangent formula 
(Blundell, Pitts, Tickle, Wood & Wu, 1981). We report 
in this paper a technique of phase refinement and 
extension which combines Sayre's equation with the 
density modification of Zhang & Main (1990) referred 
to earlier. Since Sayre's equation, solvent flattening 
and histogram matching are used simultaneously, the 
technique has attracted the acronym SQUASH. It has 
been tested On the known structure of 2Zn pig insulin 
and achieved phase refinement at 3 ,~ with extension 
to 2/~. This is a significant improvement over our 
previous results (Zhang & Main, 1990). 

Method 

The method is described in detail by Main (1990). It 
consists of expressing the electron-density constraints 
due to solvent flattening and histogram matching as 
a system of equations in terms of the unknown elec- 
tron density. These equations are solved simul- 
taneously with Sayre's equation (Sayre, 1952) to 
obtain a least-squares estimate of p(x). Since the 
equations are non-linear, this forms one cycle of an 
iterative procedure which starts with an approximate 
electron-density map and then alters it to become 
consistent with all the criteria built into the equations. 

Sayre's equation is normally expressed as 

F(h)=[O(h)/V]~. F ( k ) F ( h -  k) (1) 
k 

where the scale factor 0 (h) is the ratio of the scattering 
factors of the real and squared atoms. Equation (1) 
may also be expressed in real space as 

p(n) = ( V~ N )  ~., p2(m)O(n- m) (2) 
m 

where the electron density, p(n), is expressed as a 
discrete function evaluated at N grid points and 0(n) 
is the Fourier transform of O(h). The convolution of 
~(n) with p2(n) has the effect of changing the peak 
shapes of the squared density back to the normal 
shape. Because of the method used in the solution of 
the equations, it does not matter whether (1) is solved 

for the unknown phases or (2) is solved for the 
unknown electron density. In practice, we have used 
(2). 

The scale factor 0 (h) in Sayre's equation is sensitive 
to resolution. Its shape may be predicted from the 
atomic scattering factors and then a linear scale factor 
is calculated to minimize the residual of the equations. 
This works best at atomic resolution. A more satisfac- 
tory method for the low-resolution work described 
here was to set up the equations for a similar but 
known structure at the same resolution and then 
determine O(h) as a function of(sin O)/A by spherical 
averaging. 

The constraints on the electron density due to sol- 
vent flattening and histogram matching may be 
expressed in the equations 

p(n)=H(n) (3) 

where H(n) is the electron-density map modifed as 
described by Zhang & Main (1990). The process of 
density modification makes (3) non-linear. 

Equations (2) and (3) represent a system of non- 
linear simultaneous equations with as many 
unknowns, p(n), as grid points in the asymmetric unit 
of the map and twice as many equations as unknowns. 
The functions H(n) and ~b(n) are both known. The 
least-squares solution, using either the full-matrix or 
the diagonal approximation, is obtained using the 
Newton-Raphson technique as described by Main 
(1990). 

This determination of the electron density is part 
of an iterative procedure of map improvement very 
similar to that given by Zhang & Main (1990). Starting 
from an approximate map calculated from MIR 
phases, one proceeds as follows. 

(a) Determine the molecular envelope. 
(b) Set the density within the solvent region to a 

constant. 
(c) Modify the density within the molecular 

envelope to match the expected histogram. 
(d) Solve (2) and (3) for the electron density p(n). 

[The map resulting from the modifications in (b) and 
(c) is the function H(n) in (3).] 

(e) Calculate structure factors and their Sire 
weights from p(n). 

(f) Combine the new phases with the original MIR 
phases, taking their weights into account. Extended 
phases and weights are accepted at their calculated 
values. 

(g) Calculate a new map and repeat from (a) until 
the process has converged. 

Results 

The known structure of 2Zn pig insulin was chosen 
as a test for the method. The space group is R3 with 
two Zn atoms in the unit cell and 806 non-H atoms 
belonging to the protein in the asymmetric unit. The 
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Table 1. Phase refinement and extension for 2Zn 
insulin using the full-matrix calculation 

Mean phase error (°) 
Resolution Number of Original Extended All 

(,~,) reflexions phases  phases  phases 
3"0 1677 46.2 - -  46.2 
3.0 1677 43.0 - -  43.0 
2.8 2141 40.9 69.4 47.1 
2.6 2632 39"9 67.4 49.9 
2.4 3140 39.3 66.4 51 "9 
2.2 4294 39.2 65.6 55.3 
2.0 5551 39"3 64.8 57.1 
2.0 5551 38.7 64.5 56.7 

Table 2. Phase refinement and extension for 2Zn 
insulin using the diagonal-approximation calculation 

Mean phase error  (o) 
Resolut ion N u m b e r  o f  Original Extended  All 

(/~,) reflexions phases phases phases 

3"0 1677 46-2 - -  46"2 
3"0 1677 42"2 - -  42"2 
2"8 2141 40"7 65"8 46"1 
2"6 2632 39"9 65" 1 49"0 
2"4 3140 39"5 66"5 52-1 
2"2 4294 39"4 65"8 55"5 
2"0 5551 39"7 65"4 57"6 
2-0 5551 39"6 65.4 57-6 

magnitudes used in the calculations were observed 
F's  which had been sharpened by removing the over- 
all temperature factor. 

The 3.0 A, MIR phases were refined using the pro- 
cedure outlined in the previous section and conver- 
gence was reached after five iterations. The phases 
were then extended to 2.0 A, in five stages, increasing 
the resolution by 0.2/k at each stage. Separate calcu- 
lations were carried out using the full-matrix and the 
diagonal approximation for comparison. It was found 
that satisfactory convergence for each stage of phase 
extension was reached after about five iterations, 
regardless of the kind of calculation used. The full- 
matrix results are shown in Table 1 and these may 
be compared with the diagonal-approximation results 
in Table 2. The measure of quality of the phases which 
appears in Tables 1 and 2 is an unweighted mean 
phase error, i.e. all phases are given the same weight. 
The last entry at 2.0/~ resolution in each table is the 
result of additional phase refinement. 

It was of interest to see if the processes of density 
modification and Sayre's equation both added to the 
quality of the final result. The phase refinement 
at 3.0A, and extension to 2 .0A was repeated 
using Sayre's equation alone, i.e. without density 
modification. This gave the results shown in Table 3, 
where it is seen that the original MIR phases at 3.0 A, 
are not improved in quality and the phase extension 
to 2.0 A is poor. The overall phase error of 65 ° is 
significantly worse than the 57 ° of the SQUASH 
phases. A further calculation was carried out using 
density modification alone, i.e. solvent flattening and 
histogram matching. The results of this are also in 

Table 3. Comparison of  mean phase errors obtained 
in various calculations 

Mean phase error (°) 
00-3.0 A 3.0-2.0/~, o0-2.0/~, 

MIR phases 46.2 63.0 57.9 
SQUASH phases (full matrix) 38.7 64-5 56.7 
SQUASH phases (diagonal 39.6 65.4 57.6 

approximation) 
Sayre's equation alone 46.5 73.5 65.3 
Density modification alone 43.2 72.7 63.8 

Table 4. Correlation coefficients with the map of the 
refined structure at 2.0/~ 

2.oA 2.oA 
3.0/~, 2 . 0 A  SQUASH map S Q U A S H  map  

MIR  map M I R  map  Full matrix Diagonal  
approx imat ion  

0.625 0.676 0-739 0.728 

Table 5. Mean phase errors of the strongest F's at 
2.0A 

Mean phase error  (°) 
N u m b e r  o f  

strongest  M I R  SQUASH phases SQUASH phases 
reflexions phases Full matrix Diag. approx .  

250 30.6 16.8 18.3 
500 32-6 20-5 21-5 

1000 37.0 27.6 28.3 
2000 46.0 38.9 39.5 

Table 3, where they are seen to be only a small 
improvement on Sayre's equation. The fact that the 
SQUASH phases are better than either shows that 
each constraint applied to the electron density adds 
useful and different information. 

The computing time depended heavily upon reso- 
lution, but at 2 .0A each iteration required about 
70 min for the full-matrix calculation and 8 min for 
the diagonal approximation on a VAX 8650. Later 
program improvements have reduced these times 
significantly. 

Discussion 

A comparison of the SQUASH phases with the MIR 
phases in the same resolution range is shown in Table 
3. It is satisfying to note that the original 3.0 .~ phases 
have been improved and the extended phases appear 
to be just as good as those determined by MIR. 
However, the unweighted mean phase error hides the 
distribution of errors. The fact that the SQUASH 
phases are better is seen in Table 4, which shows the 
correlation coefficients between various maps and 
that calculated from the refined structure. Correlation 
coefficients are calculated as described by Zhang & 
Main (1990). Clearly the SQUASH maps are of better 
quality than the MIR map at the same resolution. 

This suggests that the phases of the strong reflexions 
are much better determined by SQUASH than by 
MIR. Tables 5 and 6 confirm this. The errors in the 
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Table 6. Mean phase errors of strongest E's at 2.0 A 
Mean phase error (°) 

SQUASH SQUASH 
E Number of MIR phases phases 

value reflexions phases Full matrix Diag. approx. 
>1.5 526 55.0 38.8 38.4 
> 1.0 2047 50.4 45-4 45.8 
> 0.1 5545 57.9 56.6 57.5 

SQUASH phases for the strongest reflexions are con- 
siderably smaller than those obtained by MIR. 

There are many places where the improvement in 
the quality of the map is obvious, but one example 
is given in Figs. 1 to 4. Fig. 1 shows the molecular 
structure for residues 62B (Val), 63B (Asn) and 64B 
(Gin). The glutamine side chain is disorded and Fig. 
1 shows the atoms in both positions (the occupancy 
for each is about the same). Figs. 2 to 4 show the 
associated densities from the 3.0/~, MIR map, the 
2.0 A SQUASH map and the 2.0 A map calculated 
from the refined structure. The main chain between 
CA62B and N63B is seen to be broken in the MIR 
map in Fig. 2, but is continuous in the SQUASH map 
in Fig. 3. In addition, the side-chain density from 
CA63B to ND63B is broken in Fig. 2 but continuous 
in Fig. 3 and new density is present around the dis- 
ordered atoms in the glutamine side chain in the 
SQUASH map which was not present at all in the 
original MIR map. Continuity of density is very 
important for the interpretation of the map and it is 
clear that this is significantly improved by our process. 

The tables of results show that the full-matrix 
phases are consistently better than those obtained by 
the diagonal approximation. However, the difference 

o . 2 .  ~ 6 3 B  

~3 
NO2 63B  

B 

/ C 6 3 B  

9SB 

- 0 [ I  9SB N 6 4 B  

' HE2 64B 

Fig. l. Molecular structure for residues 62B to 64B of 2Zn insulin. 

is not large. The full-matrix calculations take nearly 
ten times longer than the diagonal approximation, so 
it is doubtful whether the extra computing is worth 
the small gain in accuracy. 

The addition of Sayre's equation to our method of 
histogram matching has applied an extra and impor- 
tant constraint to the electron density. That is, the 
atomic shape. Because the histogram does not contain 
any positional information, the peaks in the map 
without Sayre's equation can be any shape consistent 
with the observed magnitudes. With Sayre's equation, 
the peak shape is fixed by the function 0(n) in (2) 
and this has added considerably to the power of the 

< 

B 

,S 

Fig. 2. Electron density for residues 62B to 64B of 2Zn insulin 
obtained from the 3/~ MIR phases. 

Fig. 3. Same electron density as Fig. 2 but obtained from 2 
SQUASH phases. 
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method. Its power is necessarily limited, however, 
because we cannot see atoms at low resolution. The 
electron-density peaks will no longer be spherically 
symmetric because of overlap and their shapes cannot 
be predicted without knowing the structure. This 
means the atomic shape function $(n) becomes struc- 
ture dependent. Fortunately, this does not mean that 
atomic resolution is an absolute necessity and we 
have shown that good results can be obtained starting 
from 3.0/~, resolution. 

This present work may be regarded as a develop- 
ment of Sayre's own work (Sayre, 1974) on the phase 
extension and refinement for rubredoxin. The 
improvements we have brought to it are an enormous 

Fig. 4. Same electron density as Fig. 2 but obtained at 2 A from 
the refined structure. 

reduction of computing time, the addition of density 
modification and the least-squares solution of the 
equations. The latter enables us to make full use of 
very weak and accidentally absent reflexions, which 
contain useful information about the distribution of 
atoms. Sayre had to remove these from his equations 
because the phases of these reflexions (the variables 
with which he was working) have no meaning. 

We wish to thank Professor G. Dodson for kindly 
supplying the 2Zn insulin data and atomic coordi- 
nates. We are also indebted to Mrs E. Dodson for 
the use of computer programs and helpful dis- 
cussions. One of us (KYJZ) is grateful to the Rigaku 
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the Dodsons for the use of their laboratory facilities 
and also to Professor M. M. Woolfson for encourage- 
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Abstract 

Deformation and valence electron densities in ger- 
manium are derived via Fourier summation and 
multipole refinement of a selectively merged set of 
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X-ray structure factors. The deformation density for 
germanium appears to be qualitatively different from 
that in silicon and diamond. The available experi- 
mental data are evaluated in the light of problems 
encountered in the electron-density analysis. In 
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